Received 22 August 2006 Accepted 6 September 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jia-Min Chen, Jing-Jia Sun, Wei-Wei Huang, Yan-Ni Lao and Shi-Ping Yang*

School of Chemistry, Shanghai Normal University, Shanghai 200234, People's Republic of China

Correspondence e-mail: shipingy@shnu.edu.cn

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.006 Å R factor = 0.046 wR factor = 0.124 Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetra- μ -acetato-bis[(9,10-dihydrobenzo-[de]imidazo[2,1-a]isoquinolin-7-one- κN^{11})copper(II)]

The title dinuclear Cu^{II} complex, $[Cu_2(CH_3COO)_4-(C_{14}H_{10}N_2O)_2]$, is centrosymmetric. The Cu^{II} ion assumes a distorted square-pyramidal coordination geometry. Four acetate groups bridge two Cu^{II} ions, forming a dinuclear molecule.

Comment

As part of our ongoing studies on transition metal complexes incorporating imidazole and related ligands (Chen *et al.*, 2005; Yang *et al.*, 2004), the title compound, (I), has been prepared and its X-ray crystal structure is presented here.

The molecular structure of (I) is shown in Fig. 1. The molecule is centrosymmetric. Each Cu^{II} ion is coordinated by a planar ligand of 9,10-dihydro-benzo[*de*]imidazo[2,1-*a*]isoqui-]isoquinolin-7-one (*L*) with a longer Cu—N bond distance (Table 1), indicating the Jahn–Teller distortion. Four acetate groups bridge two Cu^{II} ions, forming the dinuclear molecule. Within the dinuclear molecule, the Cu···Cu separation of 2.6809 (9) Å indicates no bonding between Cu^{II} ions. The coordination geometry around the Cu^{II} ion is therefore distorted square-pyramidal.

Weak C-H···O hydrogen bonding occurs between molecules (Table 2).

Experimental

A methanol solution (10 ml) of L (1 mmol) was mixed with an aqueous solution (10 ml) of Cu(CH₃COO)₂·H₂O (1 mmol). The mixture was stirred for 1 h at room temperature and then filtered. Single crystals of (I) were obtained from the filtrate after 3 d.

© 2006 International Union of Crystallography All rights reserved

metal-organic papers

Crystal data

 $[Cu_2(C_2H_3O_2)_4(C_{14}H_{10}N_2O)_2]$ $M_r = 807.76$ Monoclinic, $P2_1/n$ a = 13.2944 (12) Åb = 9.5110 (8) Å c = 14.1654 (12) Å $\beta = 108.393(2)^{\circ}$ V = 1699.6 (3) Å³

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 1998) $T_{\min} = 0.810, T_{\max} = 0.890$

Refinement

Refinement on F^2	H-atom parameters constrain
$R[F^2 > 2\sigma(F^2)] = 0.046$	$w = 1/[\sigma^2(F_o^2) + (0.0576P)^2]$
$wR(F^2) = 0.124$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.91	$(\Delta/\sigma)_{\rm max} = 0.004$
3698 reflections	$\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$
237 parameters	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cu-N1	2.241 (3)	Cu-O4	1.970 (3)
Cu-O2	1.969 (2)	Cu-O5 ⁱ	1.968 (3)
Cu-O3 ⁱ	1.970 (2)		
O5 ⁱ -Cu-O2	88.64 (11)	O4-Cu-O3 ⁱ	86.96 (12)
O5 ⁱ -Cu-O4	166.57 (11)	O5 ⁱ -Cu-N1	99.86 (11)
O2-Cu-O4	91.21 (11)	O2-Cu-N1	100.69 (11)
O5 ⁱ -Cu-O3 ⁱ	90.11 (11)	O4-Cu-N1	93.36 (11)
$O2-Cu-O3^{i}$	166.73 (10)	O3 ⁱ -Cu-N1	92.54 (11)

Symmetry code: (i) -x + 2, -y, -z + 2.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} C8-H8\cdots O2\\ C13-H13\cdots O3^{ii} \end{array}$	0.93	2.34	3.251 (5)	166
	0.93	2.51	3.312 (5)	145

Symmetry code: (ii) x - 1, y, z.

Z = 2 $D_x = 1.578 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation $\mu = 1.32 \text{ mm}^{-1}$ T = 298 (2) K Prism, blue $0.17 \times 0.14 \times 0.09 \text{ mm}$

9815 measured reflections 3698 independent reflections 2465 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.075$ $\theta_{\rm max} = 27.0^{\circ}$

ned

Figure 1

The molecular structure of (I), shown with 30% probability displacement ellipsoids [symmetry code: (A) 2 - x, -y, 2 - z].

Methyl H atoms were placed in calculated positions, with C-H =0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$. Other H atoms were placed in calculated positions, with $\hat{C}-H = 0.93$ (aromatic) or 0.97 Å (methylene), and refined in riding mode, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

The work was support by the National Science Foundation of Shanghai (No. 03ZR14073) and the Youth Science Foundation of Shanghai Higher Education (NO. 03DQ23).

References

- Bruker (1998). SMART, SAINT, SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, H.-M., Yang, S.-P., Chen, Q.-Q., Chen, J.-M. & Yu, X.-B. (2005). Acta Cryst. E61, m1277-m1279.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Yang, S.-P., Chen, H.-M., Zhang, F. & Yu, X.-B. (2004). Appl. Organomet. Chem. 18, 88-89.